Aviation Accident Summaries

Aviation Accident Summary WPR11FA166

Long Beach, CA, USA

Aircraft #1

N849BM

BEECH 200

Analysis

Witnesses reported that the airplane's takeoff ground roll appeared to be normal. Shortly after the airplane lifted off, it stopped climbing and yawed to the left. Several witnesses heard abnormal sounds, which they attributed to propeller blade angle changes. The airplane's flight path deteriorated to a left skid and its airspeed began to slow. The airplane's left bank angle increased to between 45 and 90 degrees, and its nose dropped to a nearly vertical attitude. Just before impact, the airplane's bank angle and pitch began to flatten out. The airplane had turned left about 100 degrees when it impacted the ground about 1,500 feet from the midpoint of the 10,000-foot runway. A fire then erupted, which consumed the fuselage. Review of a security camera video of the takeoff revealed that the airplane was near the midpoint of the runway, about 140 feet above the ground, and at a groundspeed of about 130 knots when it began to yaw left. The left yaw coincided with the appearance, behind the airplane, of a dark grayish area that appeared to be smoke. A witness, who was an aviation mechanic with extensive experience working on airplanes of the same make and model as the accident airplane, reported hearing two loud "pops" about the time the smoke appeared, which he believed were generated by one of the engines intermittently relighting and extinguishing. Postaccident examination of the airframe, the engines, and the propellers did not identify any anomalies that would have precluded normal operation. Both engines and propellers sustained nearly symmetrical damage, indicating that the two engines were operating at similar low- to mid-range power settings at impact. The airplane's fuel system was comprised of two separate fuel systems (one for each engine) that consisted of multiple wing fuel tanks feeding into a nacelle tank and then to the engine. The left and right nacelle tanks were breached during the impact sequence and no fuel was found in either tank. Samples taken from the fuel truck, which supplied the airplane's fuel, tested negative for contamination. However, a fuels research engineer with the United States Air Force Fuels Engineering Research Laboratory stated that water contamination can result from condensation in the air cavity above a partially full fuel tank. Both diurnal temperature variations and the atmospheric pressure variations experienced with normal flight cycles can contribute to this type of condensation. He stated that the simplest preventive action is to drain the airplane's fuel tank sumps before every flight. There were six fuel drains on each wing that the Pilot's Operating Handbook (POH) for the airplane dictated should be drained before every flight. The investigation revealed that the pilot's previous employer, where he had acquired most of his King Air 200 flight experience, did not have its pilots drain the fuel tank sumps before every flight. Instead, maintenance personnel drained the sumps at some unknown interval. No witnesses were identified who observed the pilot conduct the preflight inspection of the airplane before the accident flight, and it could not be determined whether the pilot had drained the airplane's fuel tank sumps. He had been the only pilot of the airplane for its previous 40 flights. Because the airplane was not on a Part 135 certificate or a continuous maintenance program, it is unlikely that a mechanic was routinely draining the airplane's fuel sumps. The witness observations, video evidence, and the postaccident examination indicated that the left engine experienced a momentary power interruption during the takeoff initial climb, which was consistent with a power interruption resulting from water contamination of the left engine's fuel supply. It is likely that, during the takeoff rotation and initial climb, water present in the bottom of the left nacelle tank was drawn into the left engine. When the water flowed through the engine's fuel nozzles into the burner can, it momentarily extinguished the engine's fire. The engine then stopped producing power, and its propeller changed pitch, resulting in the propeller noises heard by witnesses. Subsequently, a mixture of water and fuel reached the nozzles and the engine intermittently relighted and extinguished, which produced the grayish smoke observed in the video and the "pop" noises heard by the mechanic witness. Finally, uncontaminated fuel flow was reestablished, and the engine resumed normal operation. About 5 months before the accident, the pilot successfully completed a 14 Code of Federal Regulations Part 135 pilot-in-command check flight in a King Air 90. However, no documentation was found indicating that he had ever received training in a full-motion King Air simulator. Although simulator training was not required, if the pilot had received this type of training, it is likely that he would have been better prepared to maintain directional control in response to the left yaw from asymmetrical power. Given that the airplane's airspeed was more than 40 knots above the minimum control speed of 86 knots when the left yaw began, the pilot should have been able to maintain directional control during the momentary power interruption. Although the airplane's estimated weight at the time of the accident was about 650 pounds over the maximum allowable gross takeoff weight of 12,500 pounds, the investigation determined that the additional weight would not have precluded the pilot from maintaining directional control of the airplane.

Factual Information

HISTORY OF FLIGHTOn March 16, 2011, at 1029 Pacific daylight time, a Beech Super King Air 200, N849BM, impacted terrain following a loss of control during takeoff from Long Beach Airport, Long Beach, California. The commercial pilot and four passengers were fatally injured; a fifth passenger was seriously injured. The airplane was substantially damaged. The airplane was being operated by Carde Equipment Sales LLC under the provisions of 14 Code of Federal Regulations Part 91. An instrument flight rules (IFR) flight plan had been filed for a cross-country flight to Salt Lake City, Utah, and the crash occurred on initial departure. Visual meteorological conditions prevailed at the time of the accident. According to flight planning documents, about 0700, the pilot filed an IFR flight plan to fly from Long Beach to Salt Lake City. He was planning to fly the estimated 510-nautical-mile (nm) trip in 1:52 hours with three people. Departure was planned for 0830. During the preflight of the airplane, the pilot had some difficulties with transmitting on the radios, which delayed the trip's departure. He called the owner's Aviation Manager, about 0845, for assistance. The two of them could not rectify the problem, so they walked to an adjacent building to talk with the Director of Maintenance for West Coast Maintenance. He and one of his employees suggested that they check the transmission switch position on the pilot's oxygen mask. The two men departed and the radio transmission problem was corrected. The owner's Aviation Manager stated that he did not observe the pilot perform the airplane's preflight; there were no witnesses identified who observed the pilot conducting the airplane's preflight inspection on the morning of the accident. The pilot boarded his two original passengers, plus three additional passengers, and prepared to start the airplane's engines. At 1020, the pilot radioed the airport ground controller and requested taxi clearance to runway 30. A witness observed the airplane at the departure end of runway 30 prior to taking the active. He said it sat there for a few minutes doing some engine run-ups. At 1027, the local controller cleared the pilot for takeoff. Several witnesses reported that the initial ground roll appeared normal. Shortly after the airplane rotated and started to climb, it began to yaw left and level off. One witness said "the airplane sounded like it was in trouble." Another witness said it sounded like one of the engine's propellers "feathered, went to flat pitch or even went into beta mode, like a full power fan noise." A third witness said "the strange noise was like a propeller noise, not an engine sound." A fourth witness said that it appeared to him that the left propeller was windmilling. Several witnesses said that, as the airplane began to bank left, its wings wobbled and its fuselage fishtailed. As the airplane's bank angle continued to increase, the airplane's yawing progressed to a left skid "until it looked like it was going sideways." One witness said that, as the skid continued to develop, he spoke aloud: "straighten it out, straighten it out, straighten it out." The witness reported that the airplane's "forward speed began to drop off and the airplane didn't seem to have any lift." As the bank angle increased to 45 to 90 degrees, the airplane's nose dropped down to near vertical. One witness said that as the airplane approached the ground he heard an engine "power up and the nose jerked upward just prior to [the airplane] crashing into the ground." Another witness said the bank angle and pitch "began to flatten out just before crashing down to the ground." On the morning of the accident, the director of maintenance (DM) for West Coast Aircraft Maintenance was in his office on the Long Beach Airport. The office building was near where the accident airplane was regularly parked, and about 2,000 feet from the departure runway. He heard a loud pop and then immediately another loud pop. He knew that sound wasn't right for a departing airplane, and he immediately rushed to a doorway in time to see the accident aircraft just before it impacted the ground. The witnesses reported that, on impact a fire erupted, which consumed the airplane. Airport fire and rescue personnel were at the scene in 3 to 5 minutes. PERSONNEL INFORMATIONThe 43-year-old pilot started his flight training in October 2001. At the time of the accident, he held a commercial pilot certificate with airplane single and multiengine land ratings, and an airplane instrument rating. His most recent first-class Federal Aviation Administration (FAA) medical certificate was issued on June 18, 2010. The pilot's flight logbook and the airplane flight records indicated that the pilot had 2,073 hours of total flight experience. He had approximately 1,113 hours of multiengine time, of which 463 hours were in the make and model of the accident airplane. Approximately 665 hours of his total flight time was in light single engine piston aircraft. No documentation could be found to indicate that he had received any training in full-motion King Air simulators. The pilot had been employed, in May 2005, by Ameriflight, Inc., Billings, Montana, as a second-in-command (SIC) pilot in a Beechcraft Model 99. In October 2007, West Coast Charters, Santa Ana, California, employed the pilot as an SIC pilot in a Beechcraft King Air 200, the same make and model as the accident aircraft. Most of his King Air 200 flight time was acquired at West Coast Charters. On October 19, 2010, Rainbow Air, Long Beach, hired the pilot to fly as a pilot-in-command (PIC) in a Beechcraft Model 90. On that date, he successfully passed a Part 135 check, which also qualified as his FAA required flight review. He began flying the accident airplane as a contract single pilot on January 2, 2011. Between January and the accident he was the only pilot who flew the airplane, and the airplane's records indicate he made about 40 flights in it. About mid-February 2011, the pilot flew with the owner's Aviation Manager to Bellingham, Washington, and back. The Aviation Manager was never "checked out" in Beech King Air 200s; he was experienced in other corporate jets and turboprop aircraft. The Aviation Manager said that he helped prepare for the flight by fueling the airplane while the pilot performed a preflight inspection. The Aviation Manager did notice that the pilot drained one or more of the airplane's 12 fuel sump drains, but he was not sure how many or exactly which sumps the pilot drained. He also observed that the pilot performed the draining while he was still fueling. Normal recommended procedures for draining fuel tank sumps is to wait at least 20 to 30 minutes after fueling to permit the settling of any water or any other possible contaminates. AIRCRAFT INFORMATIONThe airplane was a twin engine, propeller-driven, eight seat, pressurized aircraft, which was manufactured in 1981 by Beech Aircraft Company. At the time of manufacture, the airplane was equipped with Pratt & Whitney Canada model PT6A-41 engines, each fitted with a Hartzell Propellers, Inc., three bladed propeller. Each engine was rated at a maximum takeoff rating of 850 shaft-horsepower. The airplane was later modified in accordance with Supplemental Type Certificates SA00433AT and SA2698NM-S, which installed Pratt & Whitney Canada model PT6A-42 turboprop engines, each fitted with a Hartzell Propellers, Inc., four bladed propeller. Each engine maintained the same maximum takeoff rating of 850 shaft-horsepower. The four-bladed Hartzell propellers were constant-speed, full-feathering, and reversible. They were manufactured in June 1999. The airplane was equipped with an automatic feathering system, which was designed for use during takeoff and landing, and should be turned off when the airplane is established in cruise climb. If the power output was reduced in either engine during takeoff, once the engine's torque dropped from 2,230 foot/pounds (ft/lbs) to about 220 ft/lbs, the propeller blades would move towards the feathered position. This system is operationally checked before every takeoff, as required in the Pilot's Operating Handbook, Before Takeoff (Run-up) checklist. The owner bought the airplane on August 12, 2009. It received its most recent annual inspection on August 9, 2010. According to airplane flight records, at the time of the accident, the airplane had flown 9,133 hours; the left engine had 5,695 total hours and 3,020 hours since its last overhaul; the right engine had 5,613 total hours and 3,325 hours since its last overhaul. The engine manufacturer recommends that the engines be overhauled every 3,000 flight hours. The propellers were installed about August 1999. The propeller manufacturer recommends that they be overhauled every 3,000 flight hours or every 6 years. The airplane's maintenance logbooks were not recovered, so an exact determination of the time on the propellers was not possible. The airplane's fuel system consisted of two separate fuel systems; one in each wing, and each feeding its respective engine via the nacelle (engine feed) tank. Each wing fuel system had a main fuel system composed of multiple interconnected fuel cells that gravity fed the 57-gallon capacity nacelle tank. Each wing had a 79-gallon capacity auxiliary fuel tank located inboard of the engine nacelle, which, if fueled would automatically feed the nacelle tank. Each wing fuel system, including the nacelle tank, had a total fuel capacity of 193 gallons, or a total fuel capacity of 272 gallons per wing when the auxiliary fuel tank was serviced. An engine can be configured to draw fuel from the opposite wing fuel system, if needed, by activating an electric crossfeed valve. The accident airplane had an empty weight of 8,160 pounds. It had a maximum gross takeoff weight of 12,500 pounds. Two days before the accident, the airplane was fully fueled with the addition of about 380 gallons of jet fuel. At 6.7 pounds per gallon, the fuel weight was 3,645 pounds. The remaining useful load capacity for people and baggage was 695 pounds. There were six adult males on board, and from their California State driver's licenses, their total weight came to 1,115 pounds. The occupant's personal baggage was weighed as it was removed from the wreckage and totaled 230 pounds. The airplane was estimated to be approximately 653 pounds overweight at takeoff. The Beech Super King Air 200 Pilot's Operating Handbook Limitations section states that the airplane has an Air Minimum Control Speed (Vmc speed) of 86 knots. This is the lowest airspeed at which the airplane is directionally controllable when one engine suddenly becomes inoperative and the other engine is at takeoff power. At airspeeds below Vmc, the rudder is no longer able to overcome the asymmetrical yawing force produced by the remaining operating engine. This airplane was not equipped with a flight data recorder or cockpit voice recorder. Federal regulations did not require them on this airplane. METEOROLOGICAL INFORMATIONAt 1040, the reported weather conditions at Long Beach Airport (LGB, elevation 60 feet), were: wind 200 degrees at 3 knots; visibility 10 statute miles; cloud condition, overcast at 800 feet; temperature 61 degrees Fahrenheit; dew point 54 degrees Fahrenheit; altimeter setting 30.13 inches of mercury. AIRPORT INFORMATIONThe airplane was a twin engine, propeller-driven, eight seat, pressurized aircraft, which was manufactured in 1981 by Beech Aircraft Company. At the time of manufacture, the airplane was equipped with Pratt & Whitney Canada model PT6A-41 engines, each fitted with a Hartzell Propellers, Inc., three bladed propeller. Each engine was rated at a maximum takeoff rating of 850 shaft-horsepower. The airplane was later modified in accordance with Supplemental Type Certificates SA00433AT and SA2698NM-S, which installed Pratt & Whitney Canada model PT6A-42 turboprop engines, each fitted with a Hartzell Propellers, Inc., four bladed propeller. Each engine maintained the same maximum takeoff rating of 850 shaft-horsepower. The four-bladed Hartzell propellers were constant-speed, full-feathering, and reversible. They were manufactured in June 1999. The airplane was equipped with an automatic feathering system, which was designed for use during takeoff and landing, and should be turned off when the airplane is established in cruise climb. If the power output was reduced in either engine during takeoff, once the engine's torque dropped from 2,230 foot/pounds (ft/lbs) to about 220 ft/lbs, the propeller blades would move towards the feathered position. This system is operationally checked before every takeoff, as required in the Pilot's Operating Handbook, Before Takeoff (Run-up) checklist. The owner bought the airplane on August 12, 2009. It received its most recent annual inspection on August 9, 2010. According to airplane flight records, at the time of the accident, the airplane had flown 9,133 hours; the left engine had 5,695 total hours and 3,020 hours since its last overhaul; the right engine had 5,613 total hours and 3,325 hours since its last overhaul. The engine manufacturer recommends that the engines be overhauled every 3,000 flight hours. The propellers were installed about August 1999. The propeller manufacturer recommends that they be overhauled every 3,000 flight hours or every 6 years. The airplane's maintenance logbooks were not recovered, so an exact determination of the time on the propellers was not possible. The airplane's fuel system consisted of two separate fuel systems; one in each wing, and each feeding its respective engine via the nacelle (engine feed) tank. Each wing fuel system had a main fuel system composed of multiple interconnected fuel cells that gravity fed the 57-gallon capacity nacelle tank. Each wing had a 79-gallon capacity auxiliary fuel tank located inboard of the engine nacelle, which, if fueled would automatically feed the nacelle tank. Each wing fuel system, including the nacelle tank, had a total fuel capacity of 193 gallons, or a total fuel capacity of 272 gallons per wing when the auxiliary fuel tank was serviced. An engine can be configured to draw fuel from the opposite wing fuel system, if needed, by activating an electric crossfeed valve. The accident airplane had an empty weight of 8,160 pounds. It had a maximum gross takeoff weight of 12,500 pounds. Two days before the accident, the airplane was fully fueled with the addition of about 380 gallons of jet fuel. At 6.7 pounds per gallon, the fuel weight was 3,645 pounds. The remaining useful load capacity for people and baggage was 695 pounds. There were six adult males on board, and from their California State driver's licenses, their total weight came to 1,115 pounds. The occupant's personal baggage was weighed as it was removed from the wreckage and totaled 230 pounds. The airplane was estimated to be approximately 653 pounds overweight at takeoff. The Beech Super King Air 200 Pilot's Operating Handbook Limitations section states that the airplane has an Air Minimum Control Speed (Vmc speed) of 86 knots. This is the lowest airspeed at which the airplane is directionally controllable when one engine suddenly becomes inoperative and the other engine is at takeoff power. At airspeeds below Vmc, the rudder is no longer able to overcome the asymmetrical yawing force produced by the remaining operating engine. This airplane was not equipped with a flight data recorder or cockpit voice recorder. Federal regulations did not require them on this airplane. WRECKAGE AND IMPACT INFORMATIONThe airplane's initial point of impact was on an asphalt runway. A ground scar proceeded on a 205-degree magnetic track across flat grass terrain for about 425 feet, where the burned fuselage was found upright on a 300-degree magnetic orientation. The wreckage was located approximately 1,500 feet from the midpoint of its intended departure runway. The debris field leading to the fuselage contained both propeller assemblies, the left engine, and components of both main landing gear. The right wing remained attached to the fuselage and its engine was in place, but remained attached to the airframe only by control cables, electrical wiring, and fuel lines. The aft port

Probable Cause and Findings

The pilot's failure to maintain directional control of the airplane during a momentary interruption of power from the left engine during the initial takeoff climb. Contributing to the accident was the power interruption due to water contamination of the fuel, which was likely not drained from the fuel tanks by the pilot during preflight inspection as required in the POH.

 

Source: NTSB Aviation Accident Database

Get all the details on your iPhone or iPad with:

Aviation Accidents App

In-Depth Access to Aviation Accident Reports